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1 Introduction

A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the

fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-

nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-

exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power

of nuclear theory. This foundation enables tests of nature’s fundamental symmetries and offers new

vistas for the full range of complex nuclear phenomena.

Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena

include:

1. What controls nuclear saturation?

2. How the nuclear shell model emerges from the underlying theory?

3. What are the properties of nuclei with extreme neutron/proton ratios?

4. Can we predict useful cross sections that cannot be measured?

5. Can nuclei provide precision tests of the fundamental laws of nature?

6. Under what conditions do we need QCD to describe nuclear structure?

among others.

Along with other ab initio nuclear theory groups, we have pursued these questions [1] with

meson-theoretical NN interactions, such as CD-Bonn [2] and Argonne V18 [3], that were tuned to

provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We

then add meson-theoretic NNN interactions such as the Tucson-Melbourne [4] or Urbana IX [5]

interactions.

More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral

perturbation theory within effective field theory (χEFT) [6] provides us with a promising bridge
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between QCD and hadronic systems [7]. In this approach one works consistently with systems of

increasing nucleon number [8, 9, 10] and makes use of the explicit and spontaneous breaking of

chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a

generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c.

The resulting NN and NNN interactions, characterized by the order of the expansion retained (e.g.

”next-to-next-to leading order” is NNLO) [11, 12], provide a high-quality fit to the NN data and the

A = 3 ground-state (g.s.) properties.

The derivations of NN, NNN, etc. interactions within meson-exchange and χEFT are well-

established but are not subjects of this review. Our focus is solution of the non-relativistic quantum

many-body Hamiltonian that includes these interactions using our no core shell model (NCSM)

formalism. In the next section we will briefly outline the NCSM formalism [1, 13] and then present

applications, results and extensions in later sections.

2 The Ab Initio NCSM Formalism

The ab initio NCSM employs realistic interactions, preserves all their symmetries, and treats all A

nucleons equally in a basis space of Slater determinants using a single-particle basis, such as the

3D harmonic oscillator (HO) [1, 13]. From this foundation, we show how to derive the well-known

standard nuclear shell model, introduced by Maria Goeppert-Mayer and Hans D. Jensen in 1949

(Nobel Prize in physics, 1963), that treats only a small number of valence nucleons outside of inert

closed shells. The pathway from the ab initio NCSM to the standard shell model involves several

major steps that we outline here. In addition, we show that the ab initio NCSM combined with

the Resonating Group Method (RGM) provides the foundation for microscopic solutions of nuclear

reactions with full predictive power.

In the ab initio NCSM, we start with the translationally invariant, intrinsic Hamiltonian for

all A nucleons. All terms act on relative coordinates – there are no single-particle energies. We

then add the HO center-of-mass (CM) Hamiltonian to provide a mean-field potential that improves

convergence. The effects of the CM interaction are easily separated and later subtracted. Since

realistic NN + NNN interactions are strong at short distances we must introduce a theoretically

sound renormalization procedure to render the problem solvable in a basis space with available

computer resources. We adopt a renormalization procedure specified by a similarity transformation

that softens the interactions and generates effective operators for all observables while preserving

all experimental quantities in the low-energy domain. The derived “effective” interactions still act

among all A nucleons and preserve all the symmetries of the initial or “bare” NN + NNN interactions.

There are two such renormalization procedures that we currently employ, one called the Lee-Suzuki

(LS) scheme [14] and the other called the Similarity Renormalization Group (SRG) [15].

For LS renormalization, the infinite HO basis space is divided into a finite model space and

an infinite excluded space by the use of projection operators P and Q, respectively. Then the LS

effective Hamiltonian Heff is obtained by performing a similarity transformation, X , on the bare

Hamiltonian, H , and imposing the decoupling condition QXHX−1P = 0; i.e., Heff has no matrix

elements between the P and Q spaces, as shown schematically in Fig. 1. Determination of the exact
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Figure 1: Schematic illustration on how Lee-Suzuki (LS) similarity transformation [14] yields an

Heff in a finite model space P decoupled from the infinite complementary Q space.

X requires the solution of the full A-body problem which is not feasible. However, the determination

of the A-nucleon Heff from two- or three-body matrix elements, obtained by the solution of the

two- or three-body cluster problem, results in an excellent approximation. It also ensures that one

recovers the original full problem, if the model space approaches the infinite space, so that the

approximation is fully controlled. The LS method can be applied to arbitrary modern NN (NN

+NNN) potentials in either coordinate or momentum space.

Recently, we have also adopted the SRG approach [15] for softening the NN + NNN interactions.

By varying a flow parameter, one can dial down the coupling between the high-energy and low-energy

parts of the NN (or NN + NNN) interaction, as illustrated in Fig. 2. These SRG Hamiltonians can be

solved in any model space P which is now a simple truncation of the infinite basis SRG Hamiltonian.

Figure 3 shows such results for 4He as a function of the P -space size given in terms of Nmax~Ω,

the maximum HO energy of configurations included above the unperturbed g.s. configuration. The

figure clearly shows that the accelerated rate of convergence for the softer SRG interactions over the

bare NN (or NN+NNN) interaction.
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Figure 2: Illustration of how the SRG procedure [15] weakens the strong off-diagonal couplings of an

NN potential in momentum space as the flow proceeds to smaller values of λ (left to right panels).

3 NCSM Applications and Results

The results of numerous ab initio NCSM applications not only show good convergence with regard

to increasing size of the model space P but also have been able to reproduce known properties

of 0p-shell nuclei as well as explain existing puzzles and make predictions of, as yet, unexplained

nuclear phenomenon. We list some illustrative examples here.

We display in Fig. 4 the natural-parity excitation spectra of four nuclei in the middle of the

0p−shell with both the NN and the NN+NNN effective interactions from χEFT [16]. Overall, the

NNN interaction contributes significantly to improve theory in comparison with experiment. This

is especially well-demonstrated in the odd mass nuclei for the lowest, few excited states. The case

of the g.s. spin of 10B and its sensitivity to the presence of the NNN interaction is clearly evident.

A recent calculation has determined the Gamow-Teller (GT) matrix element for the beta decay

of 14C, including the effect of NNN forces [17]. These investigations show that the very long lifetime

for 14C arises from a cancellation between 0p-shell NN- and NNN-interaction contributions to the

GT matrix element, as shown in Fig. 5. These 14C results were obtained in the largest basis space

achieved to date with NNN interactions, Nmax = 8 (8~Ω) or approximately one billion configurations.

Other noteworthy results include an explanation of the very small quadrupole moment (Q) in
6Li due to a strong cancellation between the one- and two-body contributions to Q [18]. Recent

calculations for 12C explained the measured 12C B(M1) transition from the g.s. to the (1+, 1) state

at 15.11 MeV and showed more than a factor of 2 enhancement arising from the NNN interaction.

Neutrino elastic and inelastic cross sections on 12C were shown to be similarly sensitive to the NNN

interaction and their contributions significantly improve agreement with experiment [19]. Working

in collaboration with experimentalists, we uncovered a puzzle in the GT-excited state strengths in

A=14 nuclei [20]. Its resolution may lie in the role of intruder-state admixtures, but this will require

further work.

4 Extensions of the NCSM for treating heavier mass nuclei

The basic idea of the ab initio Shell Model with a Core [21] is to use the well-established ab initio

NCSM to solve for the core and one- and two-body terms that are needed for performing standard

4



2 4 6 8 10 12 14 16 18 20 22
N

max

−29

−28

−27

−26

−25

−24
E

 [
M

eV
]

bare 
SRG 

4
He

NN + NNN

chiral EFT

Figure 3: Convergence of the 4He g.s. energy with the size of the HO basis. Calculations with the

bare (dashed line) and the SRG evolved (solid line) χEFT NN+NNN interactions are compared. The

SRG evolution parameter λ = 2 fm−1 was used (see Fig.2). The dotted line denotes the extrapolated

g.s. energy (-28.5 MeV), which is close to the experiment (-28.3 MeV).

Shell Model (SSM) calculations for nuclei in the sd- and pf -shells. Such SSM calculations can be

performed in vastly smaller model spaces than those required for converged NCSM calculations.

For illustration let us consider 0p-shell nuclei. We first perform a standard ab initio NCSM

calculation to obtain converged eigenenergies and eigenfunctions for the A = 6 system, e.g., 6Li.

Next, we carry out a unitary transformation of these 6Li results into the smaller model space of

0~Ω excitations, which is equivalent to a neutron and a proton in the 0p-shell and the other four

nucleons energetically frozen in the 0s-shell. Thus, we obtain only two-body matrix elements in

the 0p-shell, although we started with a full solution of the A = 6 system in the NCSM approach.

However, these two-body matrix elements contain all the physics of the six-nucleon system. These

two-body matrix elements can be separated into a core and one- and two-body components suitable

for SSM calculations. In a similar manner we can calculate the seven-body cluster in the 0p-shell by

performing an ab initio NCSM calculation for 7Li and transforming this result into the 0p-shell. In

this case, we can also determine the three-body term in the 0p-shell. These core and one-, two- and

three-body terms can then be used to perform SSM calculations for all the nuclei in the 0p-shell, in

much smaller model spaces. Effects of neglected four-body interactions appear to be small.

The same approach, outlined previously for obtaining the effective components of the shell-model

Hamiltonian in a single major shell, e.g., the 0p-shell, can also be utilized for computing the effective

components of any physical operator in the same major shell. See Ref.[18] for details. The results

of such calculations for the quadrupole moment (Q) of 6Li are illustrated in Fig. 6. Clearly, the

very small Q-moment for 6Li arises from complex many-body correlations among all six nucleons,
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Figure 4: States dominated by 0p-shell configurations for 10B, 11B, 12C, and 13C calculated at

Nmax = 6 using ~Ω = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin T=0 or 1/2,

the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation energy scales

are in MeV (adopted from Ref [16]).

leading to a large cancellation between the one- and two-body contributions.

The above 0p-shell results encourage us to extend this approach to nuclei in the sd-shell, which

will require converged results for nuclei with A = 16, 17, 18 and 19. In this regard we are working

on a new version of the Importance Truncation approach of Roth [22] to obtain these results.

5 Applications to nuclear reactions

A realistic ab initio description of light nuclei with predictive power must have the capability to de-

scribe all bound and unbound states within a unified framework. Ab initio calculations for scattering

processes involving more than four nucleons overall are challenging and still a rare exception [23].

Even calculations of resonant states are quite complicated [24]. The development of an ab initio

theory of low-energy nuclear reactions on light nuclei is key to further refining our understanding

of the fundamental nuclear interactions among the constituent nucleons and providing, at the same

time, accurate predictions of crucial reaction rates for nuclear astrophysics.

A fully ab initio approach to nuclear reactions based on the NCSM requires a more precise

treatment of the wave-function asymptotics and the coupling to the continuum. Therefore, we have

developed a new approach, the ab initio NCSM/RGM [25, 26], capable of simultaneously describing

both bound and scattering states in light nuclei, by combining the resonating-group method (RGM)

[27] with the ab initio NCSM. The RGM is a microscopic cluster technique based on the use of

A-nucleon Hamiltonians, with fully anti-symmetric many-body wave functions built assuming that

the nucleons are grouped into clusters. By combining the NCSM with the RGM, we complement the

ability of the RGM to deal with scattering and reactions with the utilization of realistic interactions

and a consistent microscopic description of the nucleonic clusters achieved via ab initio NCSM,
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Figure 5: Contributions to the 14C beta decay matrix element as a function of HO shell when the

nuclear structure is described by the χEFT interaction (adopted from Ref. [17]). Top panel displays

the contributions with (two right bars of each triplet) and without (leftmost bar of each triplet)

the NNN force at Nmax = 8. Contributions are summed within each shell to yield a total for that

shell. The bottom panel displays the running sum of the GT contributions over the shells. Note the

order-of-magnitude suppression of the 0p-shell contributions arising from the NNN force.

while preserving important symmetries, including the Pauli exclusion principle and translational

invariance.

Using the above NCSM/RGM formalism, we performed extensive nucleon-4He calculations with

the SRG-evolved NN potentials. The agreement of our calculated n-4He and p-4He phase shifts

with the experimental ones is quite reasonable for the S-wave, D-wave and 2P1/2-wave. The
2P3/2

resonance is positioned at higher energy in the calculation and the corresponding phase shifts are

underestimated with respect to the experimental results, although the disagreement becomes less and

less pronounced beyond the resonance energy. The observed difference is largely due to a reduction

in spin-orbit strength caused by the neglect of the NNN interaction in our calculations. More details

are given in Ref. [28]. For energies beyond the 2P3/2 resonance, our calculations compare favorably

with the experimental data. This is shown in Fig. 7, where the NCSM/RGM p−4He results are

compared to various experimental data sets [29, 30, 31, 32] in the energy range Ep ∼ 12− 17 MeV.

The 7Be(p,γ)8B capture reaction plays a very important role in nuclear astrophysics as it serves

as an input for understanding the solar neutrino flux [33]. The extrapolation of the S-factor (i.e.,

the cross section divided by the Gamow factor) to astrophysically relevant energies relies on nuclear

theory. We performed NCSM/RGM calculations of the p-7Be scattering as a necessary preparatory

step to investigate the 7Be(p,γ)8B capture reaction [28]. In the calculation presented in Fig. 8 that
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included the g.s. and the lowest four excited states of 7Be we found a 2+ state bound by 0.16 MeV

corresponding to the 8B ground state. In experiment, 8B is bound by 137 keV [34]. The calculated

lowest 1+ resonance appears at about 0.7 MeV. It corresponds to the experimental 8B 1+ state at

Ex = 0.77 MeV. This resonance dominates the inelastic cross section as seen in the left part of Fig. 8.

We find a 0+, another 1+ and two 2+ resonances not included in the current 8B evaluation [34]. We

note, however, that in the very recent Ref. [35], the authors claim the observation of low-lying 0+

and 2+ resonances, based on an R-matrix analysis of their p-7Be scattering experiment. Effects of

the 0+, the second 1+ and the second 2+ states are visible in the inelastic cross section above the

first 1+ state resonance. On the other hand, the 3+ resonance affects, in particular, the elastic cross

section. Calculations of the 7Be(p,γ)8B capture within the NCSM/RGM are in progress.

The deuterium-tritium reaction is important for possible future fusion energy generation. Even

though it has been well studied experimentally, its first principles theoretical understanding is im-

portant. The 3H(d,n)4He and its mirror reaction 3He(d,p)4He are also of interest for understanding

primordial nucleosynthesis. In addition, the 3He(d,p)4He is one of the few reactions to present strong

electron screening effects. The first ab initio calculations for these reactions within the NCSM/RGM

framework are under way. Our first results were obtained with the SRG NN interaction with λ = 1.5

fm−1, for which the resonance energies are close to experimental values [36]. The astrophysical S-

factor for the 3He(d,p)4He reaction from beam-target experiments is compared to NCSM/RGM

calculations for bare nuclei in the right panel of Fig. 8. We observe a slightly different shape of the

peak than that suggested by the “Trojan-horse” data from Ref. [37]. Also, no low-energy enhance-

ment is present in the theoretical results contrary to the beam-target data of Ref. [38] affected by
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the electron screening.

6 Summary and Outlook

The ab initio NCSM treats all A nucleons equally with modern NN+NNN interactions and suc-

cessfully describes properties of nuclei throughout the 0p-shell. In combination with the RGM, it

provides a truly microscopic approach for nuclear reactions. Several investigations are underway to

extend the ab initio NCSM to nuclei with A > 16 and to more completely unify the original ab initio

NCSM with the NCSM/RGM approach. The outlook includes, but is not limited to:

1. Development of effective NN, NNN and even NNNN interactions for more detailed investiga-

tions of 0p- and sd-shell nuclei.

2. Development of symmetry-adapted basis spaces such as SU(3) [39].

3. Extension of the NCSM calculations to sd- and pf -shell nuclei, i.e., ab initio SM with a core.
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4. Extension of the NCSM/RGM approach to nuclear reactions with more massive projectiles

and three-cluster final states

5. Coupling of the binary-cluster (A−a, a) NCSM/RGM basis and the standard A-nucleon NCSM

basis to unify the original ab initio NCSM and NCSM/RGM approaches. This will result in an

optimal and balanced description of both bound and unbound states. We name this approach

ab initio NCSM with the continuum (NCSMC).

6. Improved extrapolation techniques for estimating converged results.

7. The development of new techniques for quantifying theoretical uncertainties.
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C 78, 044302 (2008).

[22] R. Roth, Phys. Rev. C 79, 064324 (2009).

11



[23] K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson and G. M. Hale, Phys. Rev. Lett. 99,

022502 (2007).

[24] G. Hagen, D. J. Dean, M. Hjorth-Jensen and T. Papenbrock, Phys. Lett. B 656, 169 (2007).
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